ŠKARIĆ, V. & GAŠPERT, B. (1969). J. Chem. Soc. (C), pp. 2631–2633.

- ŠKARIĆ, V., GAŠPERT, B. & HOHNJEC, M. (1970). J. Chem. Soc. (C), pp. 2444–2447.
- ŠKARIĆ, V., GAŠPERT, B., JERKUNICA, I. & ŠKARIĆ, DJ. (1965). Croat. Chem. Acta, 37, 199–208.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- SUCK, D., SAENGER, W. & ZECHMEISTER, K. (1972). Acta Cryst. B28, 596-605.
- SUNDARALINGAM, M. (1969). Biopolymers, 7, 821-860.
- SUNDARALINGAM, M. & JENSEN, L. H. (1965). J. Mol. Biol. 13, 930–943.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 151-152.
- WILSON, H. R. & RAHMAN, A. (1971). J. Mol. Biol. 56, 129–142.

Acta Cryst. (1974). B30, 1555

The Crystal and Molecular Structure of a Bicyclo[3,3,1]nonane System: Structure of D,L-1,7-Dicarbomethoxy-3a,7-methano-3a*H*-decahydrocyclopentacyclooctene-2,10-dione

By E.E.Abola

Department of Crystallography, University of Pittsburgh, Pittsburgh, Pa. 15260, U.S.A.

AND J. PLETCHER AND M. SAX

Biocrystallography Laboratory, VA Hospital, Pittsburgh, Pa. 15240, U.S.A.

(Received 26 September 1973; accepted 19 February 1974)

The crystal and molecular structure was determined from three-dimensional diffractometer data. The compound crystallizes in the monoclinic space group $P2_1/c$, with four molecules in a unit cell of dimensions a = 10.907 (3), b = 9.520 (7), c = 15.638 (13) Å, $\beta = 111.19$ (4)°. The crystal structure was solved by direct-method phasing and it was refined by the full-matrix least-squares method to a conventional R of 0.056 on 2390 independent reflections. The structure is disordered. The bicyclo[3,3,1]nonane system in the molecule assumes two conformations, the di-chair and the boat-chair forms. The occupancy factors are 0.7 and 0.3 respectively. Strain due to the close contact, 2.097 Å, between C(5) and C(9) and the *trans* fused perhydroindane system cause considerable flattening of the rings and distortions of the valency angles and bond lengths. The carbomethoxy group at C(1) and the methylene group at C(4) are in the *trans* configuration.

Introduction

The crystal structure of 1,7-dicarbomethoxy-3a,7methano-3a*H*-decahydrocyclopentacyclooctene-2,10dione (DCPCO) was undertaken to study the conformation of the bicyclo[3,3,1]nonane system and to determine the configurations at C(1) and at the junction of the *A* and *B* rings (see Fig. 1 for numbering scheme). The results were essential for establishing the stereochemical relationships in a one-step assemblage of 3a,7methano-3a*H*-cyclopentacyclooctene systems (Danishefsky, Hatch, Sax, Abola & Pletcher, 1973). The crystal structure is of further interest in that it shows how the conformation of the bicyclo[3,3,1]nonane system is affected by the fusion of a cyclopentanone ring to one of its bicyclo rings.

It has been suggested that certain 9-keto derivatives [C(10) in DCPCO] of the bicyclononane system would exhibit an equilibrium distribution consisting of the boat-chair (1b) and di-twist-boat (1d) conformations, because of the removal of the flag-pole hydrogen and certain torsional interactions (Eliel, Allinger, Angyal

& Morrison, 1966). Neither of these conformers was found in previous structure determinations of bicyclononane systems (Webb & Becker, 1967; Brown, Martin & Sim, 1965). Only (1*a*) was observed previously. However, two of the conformers, the di-chair (1*a*) and boat-chair (1*b*) forms, do occur in this crystal structure. The possible role of the *trans* fused perhydroindane in facilitating a distribution of conformations is considered.

Experimental procedures

DCPCO was synthesized and given to us by Dr W.E. Hatch and Dr Danishefsky of the Chemistry Department in the University of Pittsburgh. Crystals were grown by slow evaporation from an ethanol solution. The crystal selected for this analysis was a colorless flat plate with dimensions $0.8 \times 0.6 \times 0.1$ mm. The space group was determined from oscillation and Weissenberg photographs. A tendency of the DCPCO to form twin crystals required a survey of several specimens before one suitable for intensity-data collection could be found. The unit-cell dimensions were determined from a least-squares (Picker, 1972) fit of 12 centered reflections using a Picker FACS-1 diffractometer system with graphite-monochromated Cu K α radiation and equipped with a NaI scintillation detector. The crystal was oriented so that the *b* axis coincided with the φ axis of the full-circle goniostat. Table 1 contains the crystal data.

Table 1. Crystal data

 $C_{16}H_{20}O_6$ M.W. 308.35 Monoclinic, space group $P2_1/c$ from systematic absences: h0l absent for l odd; 0k0 absent for k odd.

 $\begin{array}{l} a = 10.907 \ (13) \ \text{\AA} \\ b = 9.520 \ (7) \\ c = 15.638 \ (13) \\ \beta = 111.19 \ (4)^{\circ} \\ V = 1514.6 \ \text{\AA} \\ Z = 4 \\ d_x = 1.352 \ \text{g cm}^{-3} \end{array} \right\} \begin{array}{l} 24^{\circ}\text{C} & \mu(\text{Cu } K\alpha) = 1.5418 \ \text{\AA} \\ \mu(\text{Cu } K\alpha) = 8.7 \ \text{cm}^{-1} \\ F(000) = 656 \end{array}$

The integrated intensity measurements were made by scanning reflections in the θ : 2θ mode at a rate of 1° min⁻¹ over a 2θ range of 2° . The background was counted for 20 s at each of the scan limits. Three reflections were chosen as standards, and these were monitored after the measurement of every 50 reflections. A reduction in the intensity of the standards exceeding 3% was used as a criterion for automatic realignment of the crystal.

A total of 2502 independent reflections with $\sin \theta \ge 0.896$ were measured. Of these 298 had a net intensity, *I*, less than $3\sigma(I)$ where $\sigma(I)$ is given by A[N]

 $+k^2(N_{B1}+N_{B2})]^{1/2}$ and *I* is given by $A[N-k(N_{B1}+N_{B2})]$. In these expressions *N* is the total number of counts accumulated during the scan; N_{B1} and N_{B2} are the background counts at either end of the scan range; *k* is the ratio of the total scan time to the total background time; and *A* is the attenuator factor. In this group of 298 reflections, 112 which had $I \le 0$ were dropped from the data set (Shiono, 1971*a*) leaving a total of 2390 independent reflections with 186 classified as unobserved. The intensities were corrected for Lorentz and polarization effects but not for absorption. The reduction to structure amplitudes was performed during the data collection using the Picker (1972) DOS Software System.

Structure determination and refinement

Structure-factor amplitudes were placed on an absolute scale and normalized **by** means of a Wilson plot (Shiono, 1971b). Different scale factors were applied to sets of reflections as a function of sin θ , in order to renormalize the |F|'s so that the average value of E^2 would equal unity for each set separately. The signs of 450 reflections with $|E| \ge 1.5$ were determined by use of the computer program *MULTAN* (Germain, Main & Woolfson, 1971). An *E* map (Karle, Hauptman, Karle & Wing, 1958) revealed the 22 nonhydrogen atomic positions in the molecule.

The positional and thermal parameters of these atoms were refined by the full-matrix least-squares method, using the program *ORFLS-PX* of Busing, Martin & Levy (1962) as modified by Shiono (1971*a*). The function minimized was $w (|F_o| - k|F_c|)^2$ where k is a single scale factor and w is a weighting factor. The weighting scheme employed was $w = 1/\sigma^2(F)$ where $\sigma^2(F) =$ $\{(\sigma(I)/2LpF)^2 + (0.03I)^2\}$ and Lp are the Lorentz and polarization factors. The unobserved reflections were assigned w = 0. The hydrogen atoms were located in a difference Fourier synthesis computed when the

Fig. 1. Schematic drawing of the molecule showing the interatomic distances and valency angles along with the numbering system used to identify the atoms.

conventional R was 0.10. The positional parameters of these atoms were varied in additional cycles of refinement. The anisotropic thermal parameters of the

carbon atoms to which the hydrogens are bonded were assigned to these atoms and they were not varied. Refinement converged at an R = 0.068 and a difference

Table 2. Observed and calculated structure factors

The columns within each group in order from left to right are: the running index l, $10|F_o|$, $10|F_c|$. Asterisks indicate unobserved reflections and crosses indicate reflections omitted from refinement due to possible extinction effects.

F061	ACAL	F 00 S	ACAL	FOBS	ACAL	FOBS	AC AL	r085	ACAL	FCBS	41, AL	1085	ACAL	roas	ACAL	F.	085 ACAI	1 0	BS ACA	1L	1 08 S	ACAL	FOBS	ACAL	FOBS	***	FO	IBS ACAL	. ,	OBS ACAL
		· · · · · · · · · · · · · · · · · · ·	131 972 15-	-10	· · · ·	10 40 19 69 10 79		-2 80 -1 110 0 248	11	2 33		3 33	3. 18.	2 33	- 22		37 6				159	175- 67 71-		102		K= 2 19.		47 42 78 72 56 144		37 38- 57 52 102 101-
10 419	+03 140	12 100	103 330 128	-13 31 -12 50 -11 126	31- 50 116	13 66	64- 62- 73-	1 1	18- 42- 27	5 241 5 241 7 29	255	3 36	37	7 11			50 22 45 14 60 6				10.	10-		15	-14 32 -13 34 -12 120	30 52- 121	;	30 22 11• 1•	-10	1 1
1. 7	•••;;;	-17 30 -16 161 -15 70	140-	-9 122 -8 210 -7 95	128 205- 94-	10 105	100-	7 100 7 100	30	10 163	192-	-16 57	190	-15 52	•	12	204 20 41 3			0	20	20- 59-	-1 117 0 86 1 276 2 192	265	-11 236 -10 17 -9 126	150-	, 	20 19		31 27 89 89- 61 35
1 404 • • • •	419-	-12 22	23	-5 48	29- 49- 38-	-7 455	450 125- 456-	10 105	110	1. 3		-12 188 -13 107 -8 421	185 304-	-13 3* -12 69 -11 62	••		92 190 53 150 703 20	-, 1	10		36 39		3 115	111	-7 104	297	-15	77 77 78 84 58 64		51 50 96 91- 91 84-
7 352	330-	-10 151	1.9-	-2 272	267-	3 77	43	-10 10	14-	-15 28	12-	- 365	-60	-10 102			37	1	5 1	913 1412	22	21	1 148 1 27 8 50	25	-3 10	108 13- 76	-10 1	50 52 05 108 50 48	1	10* 8- 63 61 87 90-
11 135	131-	-7 10 -6 140 -5 217	130-274-	1 113	11- 103 177-	1 169	992- 169 257-	-1 101	205	-11 00	83 136- 212	2 501 365 6 13	512 602- 104		12	ij.,				7 -10 0 -9 18	131 98 176	90 - 175			1 194	49- 174-	-7 1	02 101	- 11 -11	10 10 12-
15 125 14 148 15 60	144	-3 628 -3 628 -2 819 -1 166	411- 440- 876- 178-	5 93 5 83 7 80	858- 85 63 73-	200	94- 213- 259-	-6 76 -3 165 -2 111	74- 165- 104-	-8 218 -7 91 -6 62	202 80 52	10 70	153- 70-	-1 115	37-	-15	31 34 80 71 82 76			· · ·	126 31 20	129	14 9C 13 108 12 37	97- 108- 40-	1 190 1 193 5 11-	377	-1 1	14 203 05 109 06 102	-11	14 19 17 23- 27 27-
1 943	100	2 600	927- 808 824-	8 175 9 272 10 26	168- 265 27-	7 375 8 130 9 290	367 125- 282-	0 84 1 170 2 140	40 172 135-	-3 380 -2 184	365	-18 +2 -17 106 -16 93	106	3 116	117- 88- 132-	-12	30 29 11• 0		•	7 - 3 7 2 2 1	53 31	57 - 26-	10 139	198- 125 93	7 46 8 29		-1 10	07 04 62 63 52 50		112 111- 113 131- 133 133-
3 116	34	3 49	75	13 18	18-	10 174 11 121 12 28	173-			-1 105	98- 85- 59-	-13 12	38	6 11- 7 105	12	-10	•7 3•1 •7 3•1	-10.3		6 0 7- 2	105	20-	-0 102	102-		13- 26 90-		70 64		91 94- 39 129- 20 22-
* *21 7 200 * 17	179	7 48 8 140 9 65	47- 134- 44-	-11 0+	23 18-	15 9		8 10* 7 9* 10 37	10- 30-	117	127-291	-10 176 -9 278	133-	9 27 10 97	32 28 72	-	19 21 76 168 8* 3	-12 12	12	;- ;- ;-	43	- 39-	-) 250 -2 70 -1 122	257- 68 117	-12 41	44- 39- 27	-15	· · · · ·	. ;	10 X- 3
10 212	215	11 111	120 2- 138-	-9 41 -8 11*		16 13 15 82 14 11-	47 16-	-10	10-	7 172 8 55 9 217	165 53 222-	-7 133 -6 183 -5 308	133-182	-13 50			34 454 22 213 37 228	-6 71	5 75 2 19 6 92	2- i	- ;; .	·- *3	3 109	38 26 111-	-7 85	24-	-12	10* 14 41 47 41 47	-11	29 14 37 37- 12 33-
13 197 14 51 15 10		16 70	184- 70 76-	-3 126	124-	13 193 12 479 11 102	100- 473 100	-7 21	19-	10 31	37- 76 54-	-3 -67	101-	-11 114 -10 85 -9 11 -8 82	119- 91-		48 51 81 174 41 133	1 1	1 20	7 -17 411 210	25 32 87	20	• 87 • 11 • 27 7 10	83- 29- 12-		31- 74 162-	-7	75 BL 87 73 91 186		76 74 50 40 75 29-
1 .57	- 78-	-17 8 -16 118 -15 13	119 30	-2 113	112 30-	-9 15 -8 86 -7 167	13 95 160	-1 11.	19	-15 25		0 22 1 335 2 388	338- 403	-1 37	*0 77 32	;;	94 202 81 78 32 25	-17			32	111- 32- 20 -	15 102	104-	-1 105	103 43- 66-	-1	11 119 51 52 23 19		21 20 45 42 14 14
5 .03	52 388- 83-	-13 62 -12 63 -11 143	62 61- 14]-	3 31	20-	-6 122 -5 128 -6 239 -3 285	117 133- 232- 294-	2 93	72	-13 11* -12 94	33- 35 111-	263	279-23-281-	-3 93	92- 915-	9 1 11 12	46 281 48 177 35 43	-14 2	3 30		205	281 -	13 37 12 46	39-	2 93	90 32- 27-	1	40 42 54 44 41 53		59 62- 16 16- 26 27
7 172	160-	-10 81 -9 76 -8 13	71-77	5 11• 6 70 7 126	22 73- 120	-1 20.	218	5 105	97- 109	•10 215 •9 159 •8 74	238 140- 71	16 • • 7 • 16	80- 14	0 82 1 29 2 38	62-	10 -16	24 26	-10 14	· · ·		101	101	· 27	10- 94- 113	15 94	· 36- 94-		² , ³	10 1	20 17- 17 18-
11 65	63- 93- 130-	-1 10	144-	9 130	19- 121- 17- 22	3 524	528 730	, , , , , ,	27 72- 10	- 157	11-	10 98 11 31 12 29 13 109	101- 33 36-	3 102	109- 39 33-	-15	11. 16 28 24	-8 25	1 201		55	30	5 72		-14 28 -13 17 -17 42	33- 11- 71-	-13 -12 -11		;	2 4
15 54		-2 149	139-	-12 105	100-	, 106	134- 198 6-	-	36-	-2 139	130-	1, 10	÷.,) 6-) -	-11 1 -10 -9 1	63 182 64 62 70 176		7 59		34 50 6 0 0	33-	2 204	200	-9 131	121	-9 -	47 43 92 93 98 44		19 22- 19 87- 11 K- 0
1 243	138	1 204 2 133 3 667	190 151 678-	-7 137	99 40 134-	9 10. 10 157	156	-2 40	30- 20- 31	2 99 3 295 4 131	103	-13 61 -12 129 -11 152	122	-11 25	10	- 1	76 81 81 172 25 26	-1 16 0 39 1 19		10	21	21-	1 72	70- 94- 155- 79-	-7 92 -6 49 -3 81	93 55- 86- 82-		07 98 91 81 11• 11	-12 -10	74 71- 79 85 87 91
3 208	206	5 162 5 162 6 303 7 163	149- 287 179-		68 63- 10	13 117	110		13-	5 13 6 60 7 61		-9 13	21 8- 344	-9 10	22	31	29 234		10		66 17	88- 65 17-	5 103 6 78 7 65	90 69- 49-	-3 33	183-	-1 1	50 159 73 75 11• 21	-	58 61- 43 47 14 119
, 163 51 7	43- 67	10 148	302- 78 143-	-1 180 0 11* 1 70	180 - 16 - 71 -	10 13	76 135	10 237	228-	10 38 11 53	101 **	- 275	257-	-7 187	185 70 74-	1	90 92 59 59 24 24	7.	2 66 1• 17 1• 12		30	15- 121	··· '>	101	2 135	120-	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	78 71 75 49 21 19 13 14	- ; 	17 23 99 1- 11 1- 1 21 20-
11 113	33-	12 11.	8C-	3 141 92 5 100	143 45	12 216 11 193 10 171	211 193 171-	10 13	247-	-14 23		-3 92 -2 427 -1 287 6 188	458 296- 187-	-2 55	53- 30 122		97 102 96 97 28 126 76 75	10 7	· · · ·		76	82 -1 271 26 -1	2 16	16 21- 96	2 26	43 61- 13	-12	9 E+ 3 40 46 71 75	-12	25 27-
15 16		15 27 He 1 -16 36	41- 110-	6 17 7 56 8 20	15	-9 198 -8 245 -7 186	203	-2 344 0 361	335- 374-	12 110	109-	220 62 3 196	320-	2 102	50- 13-	5 1 11	1 145 9 55 20 20	-16 1	37		88 14 42	91- 16- 38-	9 32 9 170 9 119	121-	13 52	\$1 31-	-10 10	01 104 21 22 11* 10		19 18- 49 52 37 39
3 108	107-	-14 121 -13 124 -12 47	12			-5 618 -6 618 -3 137	600- 640- 137	; ;;	92- 72	- 1) - 76 - 10•	25-	8 192 9 118	19-		40 59 -	-16 1 -15	25 128 26 36	-13 2 -12 17 -11 20 -10 1	201		129 31 87	11 124- 28 90	3 32 4 77 3 27 7 95	19 - 72 - 33 93-	10 77 -9 92 -9 78	50- 78- 98- 78		11 13 79 76 70 21		101 206 59 61 125 331
105	62- 98- 172	-10 149	186 82- 122	-9 80 -8 34 -7 18	20.	-1 54		12 162	178-	- 16.	13-	11 114	124-	-10 77	81- 29	-11	15 14 13 100	-9 15 -8 6 -7 27	271		29.	10	1 132 0 37 1 57	127	-7 189 -6 137 -5 73	192-	-3 6	0 63 5 30 7 60	;	26 37 46 67- 33 38-
9 227 10 172 11 100 12 105	226- 163- 98	-7 12 -6 173 -5 168	28 185- 198	-6 62	45- 42 183-	3 366	146 - 155 - 84 -	17 32	34- 50- 17-	-1 41 0 155 1 137	53 536 536		·	-7 10	10 57	-10 1	5 20 6 183	-1 1	30		. '; . 	82 182-	3 88	-	-3 30 -2 66 -1 30	30- 62- 28-	2 3	13 44 14 34 15 34	-13	11 K 2 13 34- 12 11 12
13 36 14 16 15 29	12-	-3 -63 -2 60 -1 311	66 309-	-1 11-	** **			12 27	17		23 28- 100-	-1. 15-	155- 15-	2 100	45- 71 115-		· · · ·	-1 10		10	**	75- 211	• · · · · · · · · · · · · · · · · · · ·		1 105	99- 68 13 75-	-17 3	· · ·	-10	33 33 24 21 24 23
0 106	104- 151- 130	1 178	192	2 147	37	10 29	296-	-9 46	78 159- 37-	· /···	136- 60 78-	-11 10-	187-	2 91 2 91 3 32	35 304 16-	-1 2	9 157- 9 172 2 258	3 130	270		345	3661 150 - 259	0 41 9 36 8 120	***	30	30-	-10 2	9 31 3 119 7 90	3	51 51- 91 93- 47 51-
1 197	33-	337 3 184 7 237	130- 189- 225-	, 10-	10-	13 73 14 74 14 74	• • •	-5 903	616-	10 99	101-	-1 16	68 290 30-		24- 10	1 2	239- 2170- 170-	6 235 7 170	229		165	167 -	6 87 5 77 6 39	90 19 - 19 -	12 15	12-		1 77 10• 11	1	10* 13 20 28 48 55-
1 100	150	9 56 10 21 11 85	19	-7 7	- 10 - 10 -	14 14 13 141 12 34	55- 141- 38-	-1 448	162 905- 76		- 12-	-3 261 -2 27 -1 89	260	-3 3	13- 101 71-	4 1	1. 1. 7	10 51	55		•		3 34 2 63 0 114 1 104	105	-9 67 -8 63 -7 115	68 63 115	-3 3	0 32 0 14	-17	11 K+ 3 12 6- 82 77
	11-	13 25	17-	-5 17 -6 62 -3 56	21 42 54	11 201 10 64 -9 172 -8 271	275 59- 186 262-	1 260 2 363 3 39 4 81	278 - 402- 33- 72-	-9 113 -9 104	102 104- 99- 33	0 121 1 229 2 435 3 50	128 231- 439- 51-	-2 42 -1 98 0 21 1 32	45- 10	10	9 50- 70 11 36-	-17 41 -16 11 -16 31	18	-15	59	60- 56- 19-	2 74	76 27 18-	-5 109	107- 26- 32	-2,	9 4 • 7 13	-9	24 32- 63 63- 11 110-
14 29 H= 0 1 70	43-	-16 21	19-	-1 -1	30	5 176	173	5 272 6 55 7 28	267 62 31-	-6 122 -5 11+ -6 150	117-	162	26 159 235	-10 -1	• •	-15	0 19- 9 53 8 •7-	-12 144 -11 184 -10 192	143	-11	100	189- 471 11 -	··· /		-2 199 -1 42 0 191 1 192	187		9 j. 16 32 17 39-		93 93- 43 43- 35 138-
1 12-	120- 209 22-	-13 99 -12 140 -11 79	98 130 76	10.		1 121	121- 176- 932		1	-2 91 -1 10* 0 12*	96 -		128-	14 37	32-	11 10	0 42- 4 34 9 72	-9 149 -8 112 -7 20	109		58 185 178			11 44-	10.	60- 73	-1 2	7 14		10* 22 21 19 28 3*-
7 24	130	-10 140 -0 74 -4 346 -7 333	343	-1 19	13 19 29-	0 142	155- 172- 90	12 55	23-	1 20 2 33 3 96	28	12 30	28-	-8 37- -6 102 -5 305	367 107 293-	-8 1	2 170-	-5 260	265	: :	22 62 182	21 - 62	21 3 58 2 38	19 59 - 41 -		(* ⁷) 89 :	12 7	9 19- 9 90	-11 -11	37 76- 11 E= 4 12 10 28 27-
10 129	129- 65- 52-		153	-16 65	48-	a 276 5 180 6 415	274- 169 197-	17 67 16 10* 15 168	62 19 167-	5 129 6 123 7 35	132-	16 79	26	0 36 2 111 • 380	20- 103 387-		0 2- 13 54- 143-	-1 201	272	- 0	39	25	1 15	43 76	-, 13		-	3 70 0 60		29 31 86 89
H= 0	110	-2 136 -1 51 0 239	159	-10 31 -8 102 -6 169	28-	e 78 9 25	19 -	13 35	14- 83	10 +2 10 +2	1	13 43 12 99 11 150	176-	6 72 1 44 16 31	83- 39 21	-1 2	226-	3 102	105	-	77 199 149	47- 192- 140			-5 50	29- 16 3	0 23 H+ 1	9 244 0 K		
143	142-	3 144	365		944 3632- 813-	11 36 12 34 13 106	32- 106	10 111 -9 118 -8 219 -7 179	100	12		- 205	113-			:	7 12- 7 29 2 34	6 105 7 19	102		3) 31 22	30- 33	3 41 2 20 1 21	30 24-	-1 10• -1 10• 0 5• 1 37	14-	-15 -15 -15 -12	6 63 0 11 8 17		7- 7- 7- 10
· · · ·		* *7	24 41 390-	6 • 12 6 • 76 8 • 77	14 478 - 460	14 ⁴ 15 13 63 12 39	14- 65- 60	- 235	227-		22	-5 332	20	15 41 16 144	48 151- 79	7	2 52	10 He 1	126	-17	, , , , , , , , , , , , , , , , , , ,	371		14 74 46-	3 21 3 56 H• 8 1	31 57	10 10	2 90 2 183 7 78-	-	9 106 13 53 19 116
10 10		10 10 11 112	245			10 20	24- 07. 150	-2 623	36- 32- 32-		68- 131- 99-	-2 182 -1 96 -3 38	170	12 15	134 720	1	12-	-15 10 -14 123 -13 149	12		210	20	119	190-	7 42	30- 39- 7- 37-	-7 2	0 103 5 27 7 26 1• 11	-10	2 1 - 0
2 13	33- 124- 51-	15 17	38 38 10	-16 83 -16 19 -15 19		-1 149	43- 159 51- 118-	1 349 2 77 3 221	90- 219-	-1 100 0 91 2 90	90-			-8 145 -7 405 -6 172	126 388- 181	- 10	2 66- 2 25 3 135-	-11 47	**	- 10	202 80 82	125 - 197 - 81 -	2 62 0 225 7 424	204-		21- 12- 1	-3 13	30 124 128	-	4 22 4 81 0 30 2 5 1
· · · · · · · · · · · · · · · · · · ·	38- 62- 21-	-15 59 -16 65 -13 29	25	-12 133	131-	1 151	43 147-	5 106 9 95 7 37	104 80 40-		15- 22- 11-	6 127 7 47 8 98	129 43- 105	-3 396	287- 376 206-	-7 10	4 103- 4 103- 4 143 8 225	-7 78	232- 82 27-		100	43- 249		285- 61 42 -1	6 232	133-	2 10	• 15	-10	2 21 7• 16 8 30
	10	-11 11	14- 185- 224	-9 161 -8 31 -7 381	159	1 64	69- 98- 186	9 146 11 175	169-	1) H- 1)		9 152 16 46 11 10*	•1-	0 154	157	-2 -1 -1	6 35- 5 21- 6 104	-3 80	45 197- 75		100	81 92 -1 77 -1		541 661	2 173	182- 266 241	H- 10	1. · · · · · · · · · · · · · · · · · · ·		1 45- 9 7 4 9-
1 10 2 10 3 25	19-	-0 140 -7 182 -6 218	204-	-6 510 -5 277 -6 140	522- 274 146-	124	125- 281-	· · · · · ·		-9 51 -9 34 -7 26	27	16 73		3 24	33 19-	1 2	1 21- 8 20- 8 40	1 110	117	2	21	112 -1 231 254 -1	22	80- 19	2 290 0 117	207	13 24 12 32 11 48	33- 39 39-		2 41-
; ;	19	-3 200	308	-2 514 -1 14V 0 199	153	17	44 23 62	16 51 15 52 14 17	30- 14-		70		12-	6 158 7 149 8 254 9 153	157 142 254	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 29- 2 16- 2 30	116	113-		11* 72 23	7.	135	19	100	113-	8 100 7 58	21 98- 59		34-
-10 1-2		1 142	134	3 421	85- 430 694			12 180 11 10*	189- 1- 210	-1 11* 0 109 1 16 2 46	110	-10 31 -9 93 -8 108 -7 176	34 98- 97	10 H 11 71 17 31	29 80 22		, <u>,</u>	10 46		:	17 17	*	10*	161 571	5 24	26- 20-		228		24- 24- 3 20-
-12 -1	• 32	5 25 6 30 7 24	10-	;;;	***	10* 10* 10* 10* 10* 10*	25	-8 301 -7 72 -6 221	200 77- 223- 342-		50- 143 35	-6 230	100	16 61	58 57	10 1	13-	-12 -12	- 13- 77 53- 87-	-17	225	29	104	140 -1 691 1001 21	2 114 1 42 0 113 9 34	37- 124 50	1 190 1 156 0 30	190 150 52		17- 2 K - 3 1
	1 600- 867- 340	* *5 * *5 10 115 11 52	106 51	0 10* 10 83 11 70			15-	-3 210 -3 210 -2 142	216 181- 196		• 10	-2 52		12 11. 11 111 12 58	30- 3- 109- 53-	-7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	1 10- 7 70 5 20 0 125	-10 25 -9 85 -8 74 -7 17	23- 90 01- 17	-12	***	130	70	44 - 45	8 115 7 49 6 184 7 29	113 43- 166 26-	3 14			22-
2 444	711	32 74		ii ii	1		19	i •1"		-, ,,	10-	2 102	109-	-9 316 -8 142	311-	-1 1	117	3 2	49-		10-		39	36	••				. 1	- •1

Fourier synthesis at this point showed a large peak of about 1.53 e Å⁻³ near the position of C(5). Analysis of the geometry around the peak indicated that a model with C(5) disordered was plausible. Occupancy factors assigned to this carbon atom were 0.3 for C(5') and 0.7 for C(5). The refinement of this disordered model converged to R=0.056 for 2390 independent reflections and to R=0.052 for 2204 observed reflections. (In the final cycles of the refinement, seven reflections which were seriously affected by extinction were assigned zero weight but were still listed as observed reflections. These reflections are marked with a cross in Table 2, which lists the structure factors.) Inspection of the final difference Fourier synthesis showed no scattering density ≥ 0.25 e Å⁻³. The atomic scattering factors used for carbon and oxygen are those of Cromer & Waber (1965) while those of Stewart, Davidson & Simpson (1965) were used for hydrogen. Computer calculations

Table 3. Atomic parameters, their estimated standard deviations, and root-mean-square displacements about principal axes of vibration

(a) Nonhydrogen atoms. Thermal parameters are in the form $\exp\left[-(h^2\beta_{11}+\ldots 2kl\beta_{23})\right]$. All values are $\times 10^4$.

	Frac	ctional coord	inates			Thermal	Root- displa	Root-mean-square displacements (Å)				
	x	У	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	D 1	D2	D3
O(1)	1688 (2)	- 334 (2)	-908 (1)	133 (2)	93 (2)	33 (1)	-38(2)	10(1)	0(1)	1794	1915	2978
O(2)	6670 (1)	4221 (2)	2902 (1)	68 (2)	153 (2)	44 (1)	-20(2)	2(1)	11 (1)	1727	2273	2878
O(C2)	3318 (2)	5295 (2)	2781 (1)	117 (2)	153 (2)	41 (1)	-15(2)	30 (1)	-33(1)	1717	2444	2901
O(C10)	645 (2)	2158 (2)	- 58 (1)	83 (2)	199 (3)	52 (1)	-64(2)	33 (1)	-36(1)	1661	2140	3349
O(C11)	608 (2)	1082 (2)	-2085 (1)	101 (2)	121 (2)	34 (1)	-6(2)	-3 (Ì)	-7(1)	1687	2371	2747
O(C13)	5392 (2)	2631 (2)	3222 (1)	117 (2)	130 (2)	42 (1)	-7(2)	16 (1)	23 (1)	1854	2402	2824
C(1)	4459 (2)	4129 (2)	1904 (1)	71 (2)	83 (2)	26 (1)	-12(2)	11 (1)	-2(1)	1659	1841	2126
C(2)	3259 (2)	4652 (2)	2101 (1)	88 (2)	93 (2)	32(1)	-10(2)	20 (1)	-3(1)	1831	1984	2227
C(3)	2006 (2)	4236 (2)	1312 (1)	75 (2)	128 (3)	37 (1)	-5(2)	20 (1)	-15(1)	1858	1971	2517
C(3A)	2489 (2)	3737 (2)	563 (1)	64 (2)	90 (2)	27 (1)	-6(2)	14 (1)	-3(1)	1689	1834	2058
C(4)	2567 (2)	4989 (2)	-49 (1)	104 (2)	83 (2)	35 (1)	-4(2)	13 (1)	3 (1)	1897	1972	2482
C(5)	29 17 (4)	4643 (5)	- 868 (3)	95 (4)	94 (4)	34 (2)	-16(4)	13 (2)	15 (2)	1650	2025	2563
C(5')	2136 (16)	4683 (13)	-1065 (8)	284 (25)	102 (13)	27 (6)	44 (19)	34 (12)	17 (7)	1518	2177	4001
C(6)	2287 (3)	3329 (2)	-1367 (1)	155 (3)	112 (3)	26 (1)	-22(2)	27 (1)	3 (1)	1602	2195	2951
C(7)	2310 (2)	2070 (2)	-739 (1)	78 (2)	90 (2)	25 (1)	-13(2)	14 (1)	-3(1)	1630	1895	2189
C(8)	3731 (2)	1529 (2)	-182(1)	77 (2)	117 (3)	35 (1)	-2(2)	17 (1)	-13(1)	1814	8022	2420
C(9)	4601 (2)	2508 (2)	573 (1)	66 (2)	102 (3)	33 (1)	-3(2)	14(1)	-6(1)	1812	1957	2198
C(9A)	3834 (2)	3041 (2)	1142 (1)	64 (2)	79 (2)	26 (1)	-12(2)	11(1)	-1(1)	1635	1774	2052
C(10)	1672 (2)	2593 (2)	-71 (1)	72 (2)	97 (2)	27 (1)	-9(2)	11 (1)	0 (1)	1680	1945	2188
C(11)	1433 (2)	907 (2)	-1331 (1)	86 (2)	100 (3)	30 (1)	-10(2)	19 (1)	-6(1)	1755	2039	2247
C(12)	950 (3)	-1503 (3)	-1425 (2)	153 (3)	109 (3)	52 (1)	-54(3)	16 (2)	-12(2)	1798	2470	3212
C(13)	5535 (2)	3564 (2)	2750 (1)	82 (2)	98 (3)	27 (1)	-6(2)	16 (Ì)	-8(1)	1657	2091	2173
C(14)	7824 (3)	3717 (3)	3656 (2)	90 (3)	198 (4)	55 (1)	4 (3)	-6(2)	11 (2)	1861	2928	3115

Table 3 (cont.)

(b) Hydrogen atoms.* Fractional coordinates $\times 10^3$.

	x	у	Ζ
H(Cl)	484	492	169
HI(C3)	135	505	112
H2(C3)	155	340	155
H1(C4)	311	570	33
H2(C4)	158	543	-26
H1(C5)	264	548	-131
H2(C5)	381	453	- 67
H1(C6)	126	355	-171
H2(C6)	248	312	-183
H1(C8)	357	65	11
H2(C8)	411	137	-65
H1(C9)	543	195	101
H2(C9)	489	330	30
H(C9A)	360	218	143
H1(C12)	119	-233	-108
H2(C12)	103	-154	-207
H3(C12)	9	-136	-159
H1(C14)	752	353	411
H2(C14)	857	439	382
H3(C14)	808	267	353

* The two hydrogen atoms bonded to the disordered carbon (C5') are not included.

were made on the PDP-10 in the Computer Center of the University of Pittsburgh and on the IBM 1130 in the Crystallography Dept. of the University of Pittsburgh. Illustrations were prepared using the computer plotting program *ORTEP* (Johnson, 1965). The final positional and thermal parameters along with their estimated standard deviations are presented in Table 3.

Results and discussion

The interatomic distances and valency angles with their e.s.d.'s are summarized in Fig. 1. Data on leastsquares planes through various groups of atoms appear in Table 4. Torsion angles are listed in Table 5.

Two conformational isomers of DCPCO were observed in the crystal structure corresponding to the di-chair and the boat-chair forms of the cyclohexanones with relative abundances of 70% and 30% respectively. The major conformer is similar to those reported by Brown, Martin & Sim (1965) and by Webb & Becker (1967), but the boat-chair form has not been observed previously. Fig. 2 shows the two conformers of the bicyclononane system observed in DCPCO and Fig. 3 is a stereoscopic view of DCPCO indicating the 50% probability ellipsoids. The crucial configurational relationships to be noted are the *trans* fused perhydroindane system, the *trans* relationship of the carbomethoxy at C(1), and the C(4) methylene group attached to C(3A).

Strong steric interactions between C(5) and C(9) and constraints introduced by the *trans* fusion of rings

A and B have a marked influence on the structural details of the bicyclononane ring system. There is clearly a flattening of the B, C ring system as evidenced by the increased separation between C(5) and C(9) which is expected to be 2.10 Å for the ideal twin-chair bicyclononane. The nonbonding distances between the observed positions for C(5) and C(9) in the twin-chair and the boat-chair forms are 3.097 and 3.619 Å, respectively. The former distance is comparable with

Table 4. Least-squares planes and atomic displacements

Coefficients (× 10⁴) are given for Ax + By + Cz = D, referred to the crystallographic axes (x, y and z in Å). The atomic displacements (d) × 10³ are in Å; atoms included in the plane are designated in bold-face type. The standard deviation in the plane, $\sigma(\times 10^3)$, is given by $(\sum_m d_m^2/m - 3)^{1/2}$ where m is the number of atoms included in the plane.

No.	A	В	С	D	σ	d
1	9500	- 727	- 598	22931	51	C(4) 25, C(6) -26 , C(7) 26, C(3A) -25 , C(5) 489, C(10) -734 , C(5') -304
2	6067	7036	- 5643	36100	87	C(3A) 43, $C(7)$ -43, $C(8)$ 44, C(9A) -44, $C(9)$ 609, $C(10)$ -704
3	3366	8307	5351	31339	315	C(1) 175, C(2) -16 , C(3) -146 C(3A) 264, C(9A) -277
4	4004	7923	5739	31167	257	C(1) 236, C(2) -70, C(3) -223, C(3A) 284, C(7) 117, C(8) -170, C(9A) -173, C(10) -367
			Planes	Dihe	dral angle	; (°)
			1 and 4		79.47	
			2 and 3		17.68	

Table 5. Torsion angles

The sign convention is that of Klyne & Prelog (1960). The torsion angles in the other enantiomorph are opposite in sign. φ in (a) and (b) is the torsion angle about the specified bond. The other two atoms required to define the angle are attached to the ends of the bond and are in the ring in question.

(a) Bi	cyclo	[3	,3,	1	nonane	nucl	eus
----	------	-------	----	-----	---	--------	------	-----

Ring	В	Ring <i>C</i> (7	0% conformer)	Ri	Ring C (30% conformer)			
Bond	φ	Bond	arphi		Bond	φ		
C(3A)-C(9A)	61.6 (2)°	C(3A)-C(4)	-47.7(3)	° C(3/	A)–C(4)	-13·5 (6)°		
C(9A) - C(9)	-53.4(2)	C(4) - C(5)) 40.1 (4)	C(4))C(5')	-29.7 (13)		
C(9) - C(8)	46.7 (2)	C(5) - C(6)) -43.8 (4)	C(5')—C(6)	26.0 (13)		
C(8) - C(7)	-48·5 (2)	C(6) - C(7)) 54.7 (3)	C(6)	-C(7)	19.7 (7)		
C(7) - C(10)	56.9 (2)	C(7) - C(10)	-65.4(2)	C(7)	C(10)	-65.4(2)		
C(10) - C(3A)	-62.7(2)	C(10) - C(3)	A) $61.6(2)$	C(10)) - C(3A)	61.6 (2)		
(b) Ring A		(c) At ring	junction					
C(1) - C(2)	-16.5 (2)	C(1)-C(9A)C(3A)-C(10)	-167·2 (1)				
C(2) - C(3)	-11.5(2)	C(3)-C(3A))-C(9A)-C(9)	-176.6(2)				
C(3) - C(3A)	34.3 (2)	C(1)-C(9A)	-C(3A)-C(4)	73.8 (2)				
C(3A)-C(9A)	-45.5 (2)	C(3)-C(3A)	-C(4)-C(5)	-174·9 (2)				
C(9A) - C(1)	37.6 (2)	C(3)-C(3A))-C(4)-C(5')					
(d) Extra-nucle	ar							
O(C2) - C(2) -	C(3) - C(3A)	168.4 (7)	O(C11) - C(1)	1)-O(1)-C(12)	2.6 (3)		
O(C2) - C(2) -	C(1) - C(9A)	163.5 (2)	O(C13)-C(1)	3) - C(1) - C(2)	56.9 (2)		
O(C2) - C(2) -	C(1) - C(13)	39.6 (3)	O(C13)-C(13	3)-C(1)-C(9A)	- 59.2 (2))		
O(C10)-C(10)-C	C(3A)-C(9A)	117.9 (2)	O(C13) - C(12)	3)-O(2) C(14)	3.8 (3))		
O(C10)-C(1	C(3A) - C(4)	-117.7(2)	C(1) - C(1)	3)-O(2)-C(14)	-175.5(2))		
O(C10)-C(1	C(3A)-C(3)	6.0 (3)	C(7) - C(1)	1) - O(1) - C(12)	-177.6(2))		
O(C10) - C(10) - C(1	C(7) - C(6)	114.0 (2)	O(1) - C(1)	C(7) - C(6)	162.1 (2))		
O(C10)-C(10)-C(10)-C(10)	C(7) - C(8)	-123.7(2)	O(1) - C(1)	() - C(7) - C(8)	30.7 (2))		
O(C10) - C(10) - C(1	L(7) - C(11)	-1.8(3)	O(1) - C(1)	C(1) - C(10) - C(10)	-03.7(2))		
$O(C_{11}) - O(1_{11}) - O(C_{11}) - O(C_$	C(1) - C(0)	-10.1(3)	O(2) - O(1)	$C_{1} = C_{2}$	-125.0(2)	,)		
$O(C_{11}) - O(C_{11}) - O(C_$	C(7) = C(10)	-1/3.5(2)	U(2) - U(1)	J = C(J) = C(JA)	1201(2)	,		
	-(1)(0)	- 1-5 5 (2)						

the 3.11 Å separation reported for chlorobicyclo-[3,3,1]nonan-9-one (Webb & Becker, 1967). However, the fusion of rings A and B in DCPCO imposes a constraint on the bicyclonane system such that the extent of flattening in the B and C rings is no longer the same. Other bicyclo[3,3,1]nonane systems (cf. Webb & Becker, 1967) without this constraint show that C(5) and C(9) [corresponding to C(3) and C(7) in their structure] are equally displaced by ~ 0.50 Å from planes 2 and 1, respectively (the unstrained distance would be 0.73 Å). In DCPCO, however, there are significant differences in the deviations of these atoms from the least-squares planes. Distances of 0.49 and 0.61 Å for C(5) and C(9) from the planes of rings C and B, respectively, indicate a greater extent of flattening for ring C as compared with ring B. The deviation of C(5')from plane 1 is -0.304 Å. The fusion of the five- and six-membered rings appears to reduce the energy difference between the di-chair and boat-chair forms.

A comparison of the interatomic distances and angles in this compound with those in 2-chlorobicyclo-[3.3.1]nonan-9-one (CBNO) (Webb & Becker, 1967) and in 1-p-bromobenzenesulphonyloxymethyl-5-methylbicyclo[3,3,1]nonan-9-ol (BCBO) (Brown, Martin & Sim, 1965) reveals similar distortions in the three structures. These distortions are very likely to relieve the strain within the molecule. For example, the angles around C(4), C(5), C(6) and C(8), C(9) and C(9A), which are involved in reducing the strains are necessarily larger than the tetrahedral angle and have an average value of 114.6° for DCPCO, 113.9° for CBNO and 114.0° for BSBO. The bridging angles C(4)–C(3A)– C(9A) and C(6)–C(7)–C(8) have an average of $114 \cdot 1^{\circ}$ in these structures. The interatomic distances between C(4)-C(5), C(5)-C(6) and C(9)-C(9A) of DCPCO are significantly short while those between C(7)-C(8) and C(3A)-C(9A) appear longer than normal. Similar trends from normal values are seen in the other bicyclononane systems [except for the values involving the disordered C(5) position]. The bonding properties of the quaternary carbons C(3A) and C(7) of DCPCO are comparable to that observed in BSBO. These bonding characteristics are also frequently encountered in crystal structures of steroids. Thus, the apparent long

distances between C(7)-C(8) and C(3A)-C(9A) may be a general property that can be attributed to quarternary carbons.

A rigid-body motion analysis (Schomaker & Trueblood, 1968) has been applied to the perhydroindane system and the attached C(4) and C(6) methylene groups. The results of this analysis indicate that the perhydroindane system could be treated as a rigid body and bond-length corrections could be applied as suggested by Schomaker & Trueblood (1968). The thermal corrections to the interatomic distances range from 0.67σ to 2.3σ and average 1.6σ .

The conformation of the A ring can be described by φm , the measure of puckering, and δ , the phase of the pseudorotation (Altona, Geise & Romers, 1968). The values found for DCPCO are $\varphi m = 45.5^{\circ}$ and $\delta = 6.76^{\circ}$. The magnitude for φm found is comparable to a suggested standard value of 46.7° (Altona *et al.*, 1968) which was found for the perhydroindane system in several steroid structures. The phase angle indicates the conformation of this ring can be described as being in the C_2 form (half chair). Although there is an additional rotational barrier in the cyclopentane ring due to the carbomethoxy group at C(1), compared with

Fig. 2. The two conformations observed for the bicyclononane system. Top: chair-chair conformation; bottom: boat-chair conformation. The arrow indicates the change in position of C(5) in going from one conformer to the other.

Fig. 3. Stereoscopic view of DCPCO showing both conformers. The atom in the low occupancy boat-chair conformer is shown as being bonded with dashed lines.

Fig. 4. Stereoscopic view down the b axis showing the molecular packing of DCPCO. The molecule represented by solid circles corresponds to the coordinates listed in Table 3. Bonds to the disordered C(5') position are represented by dashed lines.

these steroids, the magnitude of φm does not vary significantly from the standard.

The molecular packing is illustrated in Fig. 4. The contacts between molecules correspond to normal van der Waals distances.

This research was supported in part by NIH Grant NS-09178. The authors gratefully acknowledge the assistance of C.S. Yoo in conducting some of the computations in this analysis.

References

- ALTONA, C., GEISE, H. J. & ROMERS, C. (1968). Tetrahedron, 24, 13–32.
- BROWN, W. A. C., MARTIN, J. & SIM, G. A. (1965). J. Chem. Soc. pp. 1844–1857.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- DANISHEFSKY, S., HATCH, W. E., SAX, M., ABOLA, E. E. & PLETCHER, J. (1973). J. Amer. Chem. Soc. 95(7), 2410-2411.

- ELIEL, E., ALLINGER, N., ANGYAL, S. & MORRISON, G. (1966). In *Conformational Analysis*, pp. 115–471. New York: Interscience.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A 27, 368-376.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KARLE, I. L., HAUPTMAN, H., KARLE, J. & WING, A. B. (1958). Acta Cryst. 11, 257–263.
- KLYNE, W. & PRELOG, D. (1960). *Experientia*, 16, 521–523.
 Picker Corporation FACS-1 Disk Operating System (1972).
 Picker Corporation, Cleveland, Ohio.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63-76.
- SHIONO, R. (1971a). Crystallographic Computing Programs for the IBM-1130 System. Technical Report No. 49, Department of Crystallography, Univ. of Pittsburgh, Pittsburgh, Pa.
- SHIONO, R. (1971b). Crystallographic Computing Programs for the IBM-7090 System. Technical Report No. 48, Department of Crystallography, Univ. of Pittsburgh, Pittsburgh, Pa.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
- WEBB, N. C. & BECKER, M. R. (1967). J. Chem. Soc. (B), pp. 1317–1321.